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Asymptotics of Decay of Correlations for Lattice
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R. A. Minlos' and E. A. Zhizhina'

Received April 17, 1995; final December 5, 1995

We find the asymptotic decrease of correlations (o, ,, 05>, yeZ"*', |y| - o0,
in the Ising model at high temperatures. For the case when monomials o, and
o5 both are odd, using the saddle-point method, we find the asymptotics of the
correlations for any dimension v. For even monomials ¢4, 65 we formulate a
general hypothesis about the form of the asymptotics and confirm it in two
cases: (1) v=1 and the vector y has an arbitrary direction, (2) y is directed
along a fixed axis and arbitrary v. Here we use besides the saddle-point method,
some arguments from scattering theory.
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1. INTRODUCTION

The decrease of correlations

(Fq40), Fgla)) =(F . ,(0) Fg(0)) —<F 4, (0)>{Fp(0))

as |y|— o (1.1)

has been studied in a wide range of papers.'">?2® Here o= {o(x),
xeZ'*'} is a Markov Gibbs field on the lattice Z**', 4, Be Z"*' are
finite subsets of the lattice, F,, Fy are local functions of the field,
F (o)=F {0l ,) and similarly for the function Fg, 4 + y is the shift of a set
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A by a vector ye Z"*!, and < -) is the average with respect to the distribu-
tion of the field. Using the arguments of Sinai and Minlos,'" in a previous
paper'? we proposed a general method to find the asymptotics of the
expression (1.1) when |y| — co. This method can be applied to the Markov
Gibbs field, and it is based on the detailed investigation of the leading
branches of the spectrum of the transfer matrix, i.e., the stochastic oper-
ator of the corresponding Markov chain. The theory is summarized in
refs. 3-5.

In this paper we improve the technical aspects of the method to study
cases which were beyond the scope of our previous papers. One of the main
improvements is the successful application of the method of scattering
theory for the so-called Friedrichs model.®7’ Here we apply the method
for the two-dimensional lattice Ising model and also to the case of the
v-dimensional Ising model with arbitrary v when y tends to oo along some
fixed axis of the lattice Z**'. This latter case was considered in our pre-
vious paper,® and in this paper we show that our method can be applied
to the case when the vector y tends to oo along a direction different from
the directions of the coordinate axes, although we have to impose some
restrictions on this direction for technical reasons.

To proceed to the description of the method we need some facts con-
cerning the spectral analysis of the transfer matrix for the Ising model.
Below we briefly formulate these facts; one can find details and proofs in
refs. 3 and 5.

Note that for the two-dimensional Using model (v=1) many of our
statements can be deduced from the results of Onsager,’®’ Kaufmann,’®’
Schultz et al.,'*® and Evans and Lewis,*”’ who found in fact the whole
spectrum of the transfer matrix for this model. However, our method is
more general because it allows us to study any dimensions for the more
complex fields.

Also we remark that most of the papers mentioned above are devoted
to the study of the case when the vector y has the direction of some given
coordinate axis of the lattice Z"*'. The case of an arbitrary direction was
considered in ref. 28 for |4| =B} =1 (the two-point correlation function).

Polyakov'®® was the first to establish that the asymptotics of (1.1) as
y— oo along a given direction has anomalies in the behavior of the
preexponential factor in the case when |4| =|B| =2 and for small dimen-
sion v=1, 2. In this paper we show that the anomalous behavior of the
preexponential factor is valid for an arbitrary direction of the vector y in
the dimension v=1 (see Theorem 2).

Due to space limitations, we postpone some details of the proofs, as
well as application of the method to more complex models, a subsequent

paper.
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2. FORMULATION OF THE PROBLEM AND
THE MEAN RESULTS

We consider the (v+ 1l)-dimensional ferromagnetic Ising model
generated by the formal Hamiltonian

Ho)=- ) o0, o={o,=xlxeZ""}

|lx—¥»=1

For small values of the parameter f (an inverse temperature) there
exists a limiting Gibbs distributions of probabilities 4, defined on the set
Q={-1, l}Z"+I of all configurations of the field (for more details, see
ref. 10). Denote by (G} =<G),, the average of a function G(o) defined on
€ with respect to the distribution x,. Below we consider functions of the
form

c.=]] o,

NeEA

(monomials), where A = Z**! is a finite set.
In this paper we investigate the asymptotic behavior of the correla-
tions

{OysyOp) as y— o (2.1}

where ye Z"*! is a vector of the lattice Z**', and 4 +y is a shift of 4 by
the vector y. We define now which sequences { y,}, y, = o, we shall con-
sider in this paper. Let yo=(p§",.. y'*")e R**' be a normalized vector
such that

v+ 1

|y0|= Z |y(0k)|=1 (2.2)
k=1
We assume that
ptk)
ey k=lvtlas noew (23)
with the velocity
(k) 1
o
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where |y, =% k-1.v+11¥%]. In this case we say that the sequence {y,}

tends to oo along the direction of the vector y,. For example, the sequence

yn=([y:)”n]s""[y{)v+l)n])a n— 0

where [ -] is the integral part of a number, meets the conditions (2.3),
(24).
We impose the following conditions on the “directing” vector y,:

1. The coordinate y{'*! is positive and the greatest one
yorrUz |y, k=1,.,v (2.5)

This assumption preserves the general of the reasoning. In what follows the
direction of the vector e, , € Z"*" will be called the “time” direction.
In addition we require the fulfillment of the following conditions:

2. The following holds:
Iy | <A4,, k=1,.,v (2.6)

where A4, a constant defined below, such that 4, < 1/v. The necessity of this
condition will be explain below.

3. We have
yy*Y>1  (in the context of Theorem 1) (2.7)
prth>1 (in the context of Theorem 2) (2.8)

From (2.6)-(2.8) it followers that

(k)

——Iyl(yfw < 34, k=1,.v
(4]
or
(k)
I)')(yv°+ﬁl<2Av, k=1,.v
0

Hence the vector y, lies in a cone enclosing the “time” axis.

Remarks. 1. The conditions (2.7), (2.8) on the coordinate y{'*"
are necessary for technical reasons. No doubt, the expressions for the
asymptotics are true for any vector y,, but the proof in this case is con-
nected with many technical difficulties. Note that these conditions are
important only for large dimensions v.
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2. Note that the symmetry of the model implies that the asymptotics
of (2.1) does not depend on the sign of the space coordinates of the vector
Yo, SO We can suppose that all coordinates y{*', k=1,.., v+ 1, of the vector
are positive.

By virtue of the invariance of the field with respect to the involution
6.— —0,, xeZ'*! (2.9)

the correlations (2.1) are equal to zero in the case when the cardinalities
|A|, |B| of the sets 4 and B have different parity. In addition, the
asymptotics of (2.1) is distinguished according to the parity of the sets A4
and B.

We formulate now the main results of this paper.

Theorem 1. Let |4]| and |B| both be odd. Then for any vector y,
satisfying the conditions (2.2) and (2.5)—(2.7) there exists a vector
m=my,yo)={m*(y,), k=1,.,v+1} eR"*" such that

(m(yo)s o) >0

and for any sequence of the vectors y={y,} tending to infinity along the
direction of the vector y, the following asymptotics is true:

C,
ly.l"?

Oty Op) = e~ tmixl (] 4 o(1)) as n—oo (2.10)

Here C,= C,(4, B, y,) are constants independent of the {y,}.

Remark. In the case when

min |y{?|>a>0
1 v

where a is an absolute constant, the coordinates of the vector m ( y,) have
the following form
(k)

m'¥(yo) =sign y§ - In ly#+ o), k=1,.,v+1

This result is consistent with the formula from ref. 28.
In the case v=1 we can write the representation of the vector m,(y,)
for any y,:
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m{"(yo)= —In{[w?(1 — 3> +4]1"* —u(1 + %)} +In 2(1 — Bu) + O(B)
mP(yo)= —In (1 —uf)—In{[a*(1 — >+ 41" —u((1 + )}
+In{[u* (1= B> +4]1"2 (1 + ) —u(1 =28%)— 4} + O(B)
where u=g""(y§" /yg")-
In the case when |4| and |B| both are even we suppose that the

following general statement holds true, but we can prove this assumption
only in some special cases (see below, Theorem 2).

Conjecture. Let |4}, |B] both be even. Then under the conditions
of Theorem 1 and the condition (2.8) we have the following asymptotic
formulas as #n — oo:

B,

Carpp Oa> =7 —se " (14 o(l) - for v=1 (2.11)
B, —20ma yo)s ¥) b)
<UA+,|',,»JB>:W€ Hmtye ] 4 o(1)) for v=2 (2.12)
B" —2(nn 20). yn)
<UA+'V",UB>:W€ ok W 4+ o(1)) for v=3 (2.13)

Here m(y,) is the same vector as in Theorem 1, B,=B (A4, B, y,) and
v=1, 2,... are absolute constants.

Theorem 2. The conjecture is true in the following cases:
1. v=1
2. yg=e,,, for arbitrary v.

Remarks. 1. The proof of the second statement of Theorem 2 is
given in ref. 2. Here we present a briefer proof of this result.

2. The first statement of Theorem 2 can be deduced from the results
of refs. 8, 9, and 20, where the spectrum of the transfer matrix in the Ising
model for v=1 was found. Using this result and Theorem 1, one can
obtain after straightforward reasoning the asymptotic formula (2.11).
However, in this paper we use another method which can be adapted to
the investigation of the general case.

3. PROOF OF THEOREM 1.
PRELIMINARY CONSTRUCTIONS AND FACTS

Now we list facts required for the proof of the theorems. Many of
them are well known (we shall point out the corresponding references); the
proofs of new results are given in Appendices A-E.
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Since the random Gibbs field for the Ising model is the Markov one,
we can represent it as a Markov chain considering the axis of the vector
e, as the time direction,

o0,={0 ., X€Z"}, t=.,—1,0,1,2,.

A space of states of the Markov chain Q,={ —1, 1}#"is the set of all con-
figurations of the field on the zero-slice

Yo={x=(x",., x", 0)}

The stochastic semigroup of the operators T'(r=0, 1,...) for the Markov
chain is determined in the usual way, and it acts in the Hilbert space H of
the functions defined on the set £, with the scalar product

(flafz)H:<f1 f_2>

The generator of the semigroup is designated by the transfer matrix T of
the field. Since the field is invariant with respect to “the inversion of the
time,” the operator T is self-adjoint, and

{file) ']Tz(ao)> =(T\. fQ)u

where f|, f>€ H, and ¢, is the value of the field at the moment 7. We can
also introduce in H the unitary group {U,, xe Z"} of the “spatial shifts”
acting in H as follows:

(U No)=flo—x)

where f € H, 0 € Q,, and ¢ — x is a shift of the configuration & by the vector
(—x)€ Y,. The operator T commutes with the unitary group {U,}.

We shall need the following spectral properties of the operator T (one
call find the proofs in refs. 10-13 and 5).

1. For small enough f(0 < f < f,) the space H is decompose into the
direct sum

H=H,®H ®H,®H:®H, (3.1)

of mutually orthogonal subspaces H,,..., H, invariant with respect to the
operators T and U,. Here H,= {const} is a space of constants, H, is a so-
called one-particle subspace, and H, is a two-particle subspace. Note that
the sum

Hodd =Hl @H3
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contains all functions which are odd with respect to the involution (2.9),
and the sum

Heven — HO (_B H.‘! (_B 1_14
contains all such even functions. Let
T,=Tly, Uf\f"=U,\.|,,,,, i=1,23,4

be the restrictions of the operators T and U, on the subspaces H;, respec-
tively. Then we have the following estimates for the operators T and T,:

IT: 1< CR ITul<CB? (3.2)

where C is an absolute constant. Let us describe first the operators T, and
U'!" in detail.
2. The operators T, and U'"'. There exists a unitary mapping

Vi: H, = Ly(T" dA)

of the space H, into the Hilbert space L,(T", dA) of the functions defined
on the v-dimensional torus 7" (d/ is a normalized Haar measure on T")

~ —~
transforming the operators T, and U!’ onto operators T, and U'", respec-
tively:

TS =ald) f2),  feLAT", dh)
& (3.3)
UV f(A)=e"21(4)

where 1= (A", A7), (x, ) =3 x®1% Here a(A)=a(A, B) is a function
analytic on T which has an analytic extension to a complex manifold W,
where W is a factor-manifold obtained from a complex region

Wy={1=(2"., A" eC, |ImA*| <G, k=1,.,v} (34)
as a result of the identification of the points by the group of shifts
A=A+ 2nk, keZ, iEW,,

Here G,=|In | —In D,, and D, is an absolute constant such that D, > v.
Note that the manifold W, has the natural complex structure inherited
from the structure of Wj. In this case for every point 1€ W, we denote a
projection of 2 on T" by Re 1 and a projection of 1 on the “imaginary
cube” (—G,, G,)" by Im 4
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Lemma 3.1. The function a(4, ) has the following representation:

a(%, B)=Pay(A, B) + B%a,(4, B) (3.5)

The functions ay(4, §), a,(A, f) are real and even as Ae T, they have
an analytic extension in the domain W, and the function a,(4, f) is
uniformly hounded inside W), together with all its derivatives:

|D*a(4, B)I < C,
where C, are absolute constants,

D alal
T(0A) (DAY

and a =(a,,.., ®,) is an integer-valued multi-index. The function ay(4, f) in
W, can be written in the form of the series

awhp= Y g (36)

e
n={m..n}ezZ" n InkI!

Proof. See Appendix A.

Remark. In the case v=1 Schultz et al.®® found the precise
representation for the function a(4, f):

a(A, py=e*{(4z3—cos A) —[Az—cos 1)> —1]"3} (3.7)

where 4;=ch 28 cth 28. Here we take the branch of the square root that
has positive values as 1 is real. From (3.7) we notice that in the case v=1
the function a(4, £) is analytic inside the region |Im A] < t, where 7 is a root
of the equation

cht=——+sh2f—1

1
sh2p
From the formulas (3.5), (3 6) and the evenness of the function a(4, f)

it follows that the maximum of a(2, f) on the torus T is attained at the
point A =0,

max a(4, f) =a(0, f)
AeT™
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Thus the operator T, has an absolutely continuous spectrum coinciding
with the segment

[min a(4, f), max a(d, f)=a(0, )] (3.8)

leT" AeT

and the norm of T has the order §. Note that the length of the segment
(3.8) has the order 8%

Lemma 3.2. 1. The function a(4, ) is not equal to 0 inside the
domain Wy:a(l, f)#0, e W,

2. The function a(/, f) is real as 2 Re A=0, Ae W, (or at the points
Re 2 =nk, where k= (k'",.., k"), k'"=0, 1,i=1,..., v, by the identification
of the torus 7" with the cube [0, 2r]"), and the second differential of
a(A, p) is nondegenerate for all 1¢ Wj such that Re 1=0.

3. In the case v=1 the second derivative of the function
a(4, B), Ae Wy, is not equal to zero at all critical points of the function

a4, B).
Proof. See Appendix B.

Lemma 3.3. Let 4 =Z" be a finite set such that | 4| is odd. Then
the function

L) =V Py o)(2) € Ly(T", d) (3.9)

has an analytic extension to the region W,. Here P, is a projector from
Ly((—1, )", 1), where 4 is the distribution of probabilities for the Ising
field on Z**!, on the space H,c H< L ((—1, 1), p).

Proof. The proof can be obtained from the reasoning of refs. 5 and
10, and is based on the constructions of the subspace H, and the mapping
V,, as well as on the general estimates for Gibbs fields correlations.!'®’

Remark. From the decomposition

=3 c,e"*, le Wy

neZzZ"

which is true for every analytic function in W), it follows that the function

f*()&) — Z C—"e—i(u.).)

neZzZ"

is also analytic in W;. This function is equal to f(1) when 1 is real, 1e T".
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Below we shall describe the operators 7, and U‘? in detail when we
prove Theorem 2.

Proof of Theorem 1. Let 4 and B both be odd. Denote by A’ = Z!
and B' = Z' the projections of 4 and B, respectively, on the “time” axis
e,. 1, and let ae 4’ be the rightmost point of the set 4’, and be B’ be the
leftmost point of the set B'. We can suppose without loss of generality that
b=0. Then

Oy 05 =(T"""" U PLO i1 PHO ) (3.10)

when y*'*">a Here v=(7, y**"), 7=(y"..., ¥ eZ", and P, is a

projector on the space H. The formula (3.10) follows from the facts that
the field is Markov, translation invariant, and invariant with respect to the
inversion of the time. From (3.1), (3.2), and Lemma 2.2 it follows that the
scalar product in {3.10) can be written as

(T_‘l.u-+l)+uU.(fl) PlllaA—tlc'..+|* P”lo.B)+0((Cﬁ)3_|.1v+ll) (311)

It turns out that the asymptotics of the first term in (3.11) leads to the for-
mula (2.10); therefore the second term in (3.11) is not essential for the
asymptotics provided that the inequality (2.7) is realized. Using the spectral
representation (3.3), we have for the first term in (3.11)

WD arr(l)
(Tl U)" PHlO.A—{u'.-H’ PH|UB)

= | (a(aysraete e () fR(A) d
T
=j exp{ 111 )} g(2) i (3.12)
T
where the functions %’ . (2) and f’(A) are defined by the formula

(3.9),
gAY=L o ()LD ()
and for any &= (&"..... £")e RY
A =lna(2)+i(& 1)

It should be assumed that

. ¥
C=C(,\’)=W (3.13)
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in formula (3.12). Since f\’(1), f'3’(A) are functions analytic in W, we can
find the asymptotics of the integral (3.12) by the use of the saddle-point
method.'”

1 Lemma 3.4. For small B(0<pf<f,) and for any ¢=
(ED.., EY) e RY, such that

ER >0, <1+ y |5W>>DWMWL k=1,2,.,v (3.14)
s=lu.v

where D, is the same constant sac in the definition (3 4), there exists a
unique critical point 1, =4(¢) of the function

fddy=lna)+i Y ADED
J=la,v

with pure imaginary coordinates lying in the region W,. This point is non-
degenerate and it is a saddle point for the integral

ngMW“ﬂ (3.15)
-

The point 14(£) has a differentiable dependence on parameters &=

(f“),..., é(“))-
Proof. The proof is given in Appendix C.

Remark. Now the condition (2.6) follows from (3.14), (3.13), (2.2),
and (2.3), where the constant 4, should be equal to 4,=1/D,.

Recall that the critical point 4, is a saddle point of the integral (3.15)
if there exists a surface I” inside W (or a contour y in the case v=1)
passing through the point A, such that the following conditions hold:

1. We have
[ gyerda={ g2 e az
r T

2. We have
max Re fA1)=Re f:(4,)
relr
3. In a neighborhood of the point A, the surface I passes along the

level surface Im f:(A) =const [or the surface of steepest, descent of the
function Re f;(4); for more details see ref. 17].
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Now we deduce the asymptotics of the integral (3.19) using Lemma
34. Let y, - oo be a sequence of vectors tending to infinity along the direc-
tion y,, and let £, be a vector with coordinates

v(A)

& = . s=1,.,v
y:'\ +1)
and &(oo) be a vector with coordinates
N y(\)
e )_)m+n’ s=1,.,v
Note that the relation
S 00(E)) — [l Aol(00))) = O(IE — &( oo < ) (3.16)

as n— oo, follows from Lemma 3.4 and the condition (2.4). Thus, putting
Ao=72(&(00)), we can use Lemma 3.4 for the integral (3.12). Going over
the surface I (or contour y) constructed in Lemma 3.4, we can apply the
Laplace method to the integral (3.12) over I, and taking into account
(3.16), we obtain the asymptotics (2.10), where

mY(yo) = —iASNE(0)), s=1,..,v
m"" o) = —In a(Ao(&(0)))

Theorem 1 is proved.

4. PROOF OF THEOREM 2

Since for even |A| the projection of the monomial o, e
L,((—1, I)Z"”,,u) on the space H, equals zero, and P, 0, #0, to find the
asymptotics (2.1) we have to study the characteristics of the operators T,
and U'? acting in the space H,.

Characteristics of the Operators T, and U'>. There exists a unitary
mapping

Va: Hy,— LY™(T"xT",dA, d>) = LY™ (T x T*, dA, dA,)

transforming the operators T, and U'? into the operators T, and U "’

822/84/1-2-7
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(Tzf)(/ll LAy =alyaldy) f(A, 45)

+[ S(Ays Ags gy, f2) 04y + Ay — ) — pta)

JrexT
x fluy, pz) duey dues (4.1)

—~ y N -
(UPfY Ay, o) =R (0,, 2y), xeZ” (42)

where (1,,4,)eT"xT", f(A),i)el¥™, and LY™ cLY™(T"xT",
di, dA,) is the space of symmetric functions f{4,, A,) orthogonal to func-
tions of the form A(4, +A,) e LY™( TV x T, d2, di,):

j S0 Aa) 2y + 2a) dAy dRy=0
<7

Here the function «a(l) is the same one as in (3.3), and the kernel
S(Ay, Asy fty, p£3) is an analytic function with respect to each variable
Ays A3, fy, fta € Wy which is defined on the manifold

Fl;= {()n.l, )&3./(1,,“2)6( W/J)4: }“I +)"2—.ul -—/12:0} (43)
In this case the kernel S(2,, 4., st,. it») has the form''*’
S(Ays Azs g fta)
= —a(d,) alls) —alp,) aly,)

+f a(v,) alvs) dvy doy+ K(Ay, Ao, s 1) (4.4)

vl =2 + Ay =y +p2

where the function K(A, A, f,, i;) analytic in (W,)* is defined on the
manifold (4.3) and satisfies the estimate

|K(Ay, Aoyt pt2)] < CB, Aysha ity ia€TY

In addition, the function K(2,, 4., u,, jt») meets the following condi-
tions:

KAy Asapers pa) = Ky s pas Ay 4s), Ay Ao gt pa €T

” KA\, 2 gty 1) Oty + pts — A) dpey dpes
Tix T

=ﬁ K(2ys 2oy gty ta) 81, + Ay — A) di, dly =0
T'xT"

for every AeT"
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From (4.1) it follows that we can represent the space H, as the direct
integral of the Hilbert spaces''*’

Hy=0 Hi(A)dA (4.5)

™

~ —
such that the operators 7, and U'? have the analogous representation in
the form of the direct integrals

To=¢ Tyd)dd, UP=§ UR(A)dd (4.6)
"

T !

In so doing, the operator U'?(A) is divisible by the unit operator E(A) in
Hy(A):

— .
U2(A) =" VE(A) (47)

N

and the space H,(A) for every AeT" is unitary equivalent to the Hilbert
space L{(T",dlycL{(T", d)) of the functions f(4) on the torus T
orthogonal to the constants

J' fydi=0
.

and invariant with respect to the substitution 1 — A4 — 1, 1e T". In essence,
the decompositions (4.5)-(4.7) and the transfer to the space Ly (T", dA)
signify the passage to the new coordinates on T"x T

A=)+, A=, (4.8)
In this case the operator (4.2) will have the form (4.7), and the
operator T5(A) in Ly (T", dl) is written as

ToA) [ =a D D+ [ SALp fade. el (Thdl)  (49)

where

a ,(/i):a():)-a(A—):) (4.10)

p

S(Apy=SA A= 1, A=7) (4.11)

As 1s evident from Lemma 3.1 or from the representation (3.7) for the

~ a

function a(4), there exist exactly two critical points of the function « (4)
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for every AeT": A, =A4/2 and A, =A/2+n ie, for every fixed A =4, + 4,
the points A, = (A7, 1Y) = /1/2 A2y and 2. =(A/2+7r, A2+ 7n) are
critical.

From formula (4.9) one can see that the operator T,(A) (belonging to
the class of the Friedrichs operators'”’ for every A e T* has an absolutely
continuous spectrum coinciding with the range of the function a (4),
Je T, and possibly a finite set of eigenvalues,

e (A e(A),  k=k(A) (4.12)

which are outside of the continuous spectrum.'”' In addition, it can be
shown'!®’ that there exists a neighborhood of zero O c T such that the set
of eigenvalues (4.12) is empty when A € O. If we denote by

E=max ¢,(A4)
Ak
then
E<max a (1) =a,_o0)=a*0) (4.13)

A4

Finally, the case v=1 the set of eigenvalues (4.12) is empty for every
Ae Tv.(s. 9, 20)

For every A€ T* we denote the subspace of L7 on which the operator
T,(A) has only the absolutely continuous spectrum by L1 ac S , and the
linear span of the eigenvectors of the operator T,(A4) by L, | dise CL’l The
decomposition

(for every A€ T") generates the decomposition
Lym=Lyy @ LY. (4.14)

where
E?”:c = '[ ‘LA'/_: ac dA" Li}ll(?lsc. J L{" disc dA

Let T, ,. and T g be the parts of the operator T, acting respectively, in
the subspaces (4.14), and we introduce the analogous designation for the
—
operator U'?.
From (4.13) it follows that the spectrum of the operator T, in the sub-
space LYY, is separated from the upper boundary of the spectrum of T,
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in the subspace L™ . It follows from the general scattering theory for the
Friedrichs operators‘ﬁ’ that for every A4 e T" there exists a unitary mapping
{so-called “wave” operator)

QQA). L

2, ac

- LA;
transforming the operator TZ(A)IL-.:: into the operator T'(A):

a

(TOM NN =a D fd),  fels

o

Hence it follows that the operator
o= ) d

realizes the unitary mapping
Q Lyy - Ly
transforming the operator 7,] ym into the operator

— ~
TYS, A =aldy) a(2) fidy, 2),  fidy, 2)e L™

and the operator U'?’| s~ into the operator (4.7).

Lemma 4.1. Let 4 = Z" be a finite set such that |4] is even; then
the function

Sul2y 23) = (VaP 0 HAy, A) €LY™ (T X T, dAy d1,)

where P, is a projection on the space H,, has an analytic extension to the
region W, x Wy,

Proof. The proof is analogous to the proof of Lemma 3.3. It can be
obtained from the reasoning of refs. 5 and 10. The proof is based on the
constructions of the subspace H, and the mapping V,, as well as on the
general estimates for cumulants of the Ising field under small 5.'¢’

Proof of Theorem 2. Using formula (3.10), we have that for even |A4]|
and |B|

(O4sprag)=(Ty "+ UDP, 0, P05+ O((CR ™) (4.15)

—acy 4

In what follows it will be shown that under condition (2.8) the main con-
tribution to the asymptotics of {4.15) is given by the first term.
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Let us consider the second part of Theorem 2: =0 and v is arbitrary;
then

Vel g
(T4 P —vensis P,05)

=) f e O 2 Tl ) ddy
T'x 7"

drad)
-Ji” T’ dg‘ ¢ A ey *|)()")’2'2)
T'x T

X3 (A, As) dA, diy + O((E)""")

= UT . (a(2) a(2;))" e g, —aeni Ay A)

XEp(A1, A2) dAy dhy+ O((E)™") (4.16)

Here f% ;4 (2,. 4;) is a projection of [, (4,, Z,) on the subspace Liy“,‘t,
and

a4, A = (24, 2a) (4.17)

To find the asymptotics of (4.16) we have to apply the Laplace method to
the integral in (4.16) (see, for example, ref. 17) and to do this we have to
know the behavior of the function g,_,...(4,,4,)8s(4,.4;) in the
neighborhood O e TV x T" of the point 0=(0, 0) e T" x T, where the maxi-
mum of the function «(4,)a(Z,) is attained. 1t turns out that in O the
singularities of the function g ,(4,, 4,) are on the manifold {4, = 4,}. Below
in Lemma 4.2 we shall describe these singularities.

Let us introduce local coordinates in Oe TV x T
A=A+, (=A—Ao=l-1, (4.18)

and let « () and g ,(A, {) be the functions «(4,, 4,) and g _(4,, 4,) written
in the coordinates (A, {) in the neighborhood Oe T" x T". For every fixed,
sufficiently small A the function « () as a function of { has a unique criti-
cal point { =0 in a small neighborhood of zero. Let A4 ,({) be a quadratic
form coinciding with the second differential of the function & ,({) at this
critical point. Note that 4 ({} is negative definite for all sufficiently small
A; therefore 4 ,({) is equal to zero only at the point {=0 (i.e., on the
manifold {1, =7,}).

Lemma 4.2. The function g (1, {) has the following representation
when A and { are small enough:
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1. Forv=1
g4, )= AN (4, 0+ ex(4, ) (4.19)

where ¢ (A4,{),k=1,2, are analytic functions in QOeT"xT" and
c5(A4,0)=0.
2. Forv=2

_ald, O n 4,0 +cx(4,¢)
bi(4,0)In |A4,(O)| +bx(4, ()

gA(Aa g)

where ¢ (4, (), bi(A, ), k=1, 2, are analytic functions in Oe T"x T", and
¢y(4,0)=0.

3. Foroddv=3
A A =AD" e(A4, 0) + es(A4, )

where ¢,(4, ), k=1, 2, are analytic functions in Oe T"x T".
4. Forevenvz=4

(A4, O [AADI" 27 In |4 (D] + e5(4, {)
by(A, ) [A D122 In |4 (O] + b4, 0)

g4(A, ()=

where ¢, (A4, (), b (A4, (), k=1, 2, are analytic functions in Oe T*x T".
Proof. The proof is given in Appendix D.

Now from Lemma 4.2, using the Laplace method for the integral in
{4.16), we obtain the formulas (2.11)—(2.13), where in the case y,=¢,,, we
have exp[ —2(m,(yo), ¥..)] = (a(0, 0))"*",

We are coming now to the first part of the theorem, when v=1 and
the first coordinate of the vector y, is not equal to zero: y{'’ 0. As dis-
cussed above [see (4.15) and (4.2)], the asymptotics of the correlations

{044, 0y amounts to finding the asymptotics of the integral

H (a(l,) a()bz))"]"Zl exp[iyf,"(l, +45)]
TxT

X &4 —ue{Ars A2) Bl A, Ay) dAy dAy (4.20)

as y,=(y", y'¥) > o0, n - oo along the vector y,=(yg"’, y".

As for odd |4| and |B], in this case we can use the saddle-point
method. Let us deform the contour T!x T' to a contour I'x I, where
I'=T(sy)=(A+isg, AeT"), and isy = Ay = 1o(¢) is the critical point of the
function In a(1) +iéA, &=y /y?, discussed in the previous section. Let
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Rc W, x Wy be a subset of the region Wy x W, formed by all contours
I'(s) x I(x) such that —G,<s<G,; see (3.4). To use the saddle-point
method we have to construct an extension of the functions g, s(4,,4,)
defined on T'x T' (i.e, for s=0) to the set R, so that the integral (4.20)
is equal to the following integral

] (alh,) a(12))"" explivy!) (4 +22)]
I(sg) x I'(30)

X 84— ae(A1> 42) 8l Ay, Aa) dAy dhy

= ” exp{ p? (Ina(A,) + i€l +1In a(Ay) + iEA,)}
I

s0) x I'sg)

XgA——m’z()'l!iZ)E?()‘-la /12)([}»1(1%2 (421)
We can conveniently introduce in R the coordinates
A=)\.|+112, ;»=Re l] (422)

which are a generalization of the coordinates (4.8) in 7' x T' R, and let
a ,(2) be the function a(l,, 4,) written in these coordinates. It is evident
that A passes by the complex manifold

Wy={A:Re AeT', |Im 4| <2G,}

and A runs through the torus T'. We recall that for every real A€ T there
exist two critical points of the function a (1) = aly A=A M) =A, eT"
and A, =A.(A)=A,eT', which are on the manifold {1, =2,}, and the

analogous critical points of the function a (1) exist for every fixed A€ W,,.
If we denote small neighborhoods of these critical points by O, and O-,

respectively, then let
Az}\.l"‘iz, C=}L—)\,Cl. (4.23)

be local coordinates in @, (and we have analogous ones in O,).

Lemma 4.3. For any even |A4] the function g (4,, A,)=g(4, 1),
defined by the formula (4.17) for 4,, A,€ T'' and written in the coordinates
(4.22) has a continuous extension to the set R such that:

1. The function g 4(4, 1) is analytic with respect to 4 € W, for every
fixed Le T

2. For every fixed 4 € W, the function g,(4, 4) is real-analytic with
respect to Ae T, except for the critical-points 1.(A), and A.(A4), and in
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the neighborhoods O, and O, of these points the function g ,(A4, 1) has the
following representation [in the local coordinates (4.23)]:

g4 0= A D+ (A, L) in 0O, (4.24)

and we have the same representation in O,. Here the functions
(A, 0), i,k=1,2, are analytic of A€ W,, and real-analytic of { in a
small neighborhood of the point ¢{ =0. In addition,

4,0)=0, i=1,2 (4.25)

Proof. The proof is given in Appendix E.

Now the equality of the integrals (4.20) and (4.21) follows from
Lemma 4.3. Further, as is seen from the reasoning of the previous section,
the maximum of the real part of the function

f()"l7 )‘,2, é) =]I’1 (1(/11)-}-16/1, +ln fl(lz)"'ié)\.l

on the contour I'(sy) x I'(s,) is attained at the point 4, =1, =1is,=4,, and
this contour is tangent to the level line of the imaginary part of the function
J{4,, 45, &). Hence the neighborhood of the point

Po={(4g, Ag) € T(sy) x [(s59) = R

makes the main contribution to the asymptotics. Since the second differen-
tial of the function f(4,, 2, £) is nondegenerate at the point P,, we can
apply standard practice to calculate the asymptotics of (4.21) using the
Laplace method. Taking into account the character of the singularities of
the functions g (A4, {) and gz, {) at the point P, (afforded by Lemma
4.3), we obtain the formula (2.11).

Theorem 2 is proved.

APPENDIX A. PROOF OF LEMMA 3.1

The proof is based on a construction of the space H,, as well as on
some sharp estimates used in this construction (given in refs. 5, 11, and 12).
Here we recall the main steps of the construction of H, and some implica-
tions of the sharp estimates which are necessary for the deduction of the
representations (3.5) and (3.6).

A1. The Multiplicative Basis in H

For every point xe Y, = Z"*! of the zero-slice Y, we denote the sub-
set {yeY,y<x} by V.cVY, where y<x in terms of the usual
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lexicographic ordering on Y, ( =Z"). Let u, be a distribution of the Ising
field on the lattice Z'*', and for every configuration oe{ —1,1}%"" we
define

t(o)=1.(0| v)= {a(x) |o| V_\>,,,,

where (- |o|,,>,, is a conditional average under the condition that the
values of the configuration ¢ on the set V, are fixed (and coincide with
al)

Let us introduce functions

) _a(x)—1.(0) )
and u. (o) —_(1 EpTpEE eH, xeYy

u(o)= 1_[ u o)

~xel

for any finite subset /< Y,. It turns out that the set of the functions
{u,, 1< Y,} forms an orthonormal basis in the space H. In addition, the
following expansion is valid:

u

Jdo)=0o(x)—8 Z a(\—e)+u

k=1.

where ¢, is a unit vector in Z* which has the direction of the kth axis, and
i, has the following representation:

I‘?.'\’ = Z B; g,

F =3 SRR

with coefficients B} . From the sharp estimates of the coefficients B} given
in ref. 5, it follows that for any x, ye Y,, v <y,

(Tu_\.,u_,.)=<a(.\'+e..+| [a(\ ﬁ Z U(y—fk)}>

+O((CPY =12 (A1)
where |&| =3, _, |7 for E=(&'M,..., &™) e Z’. The analogous represen-

tation is valid for x = y.

A2. The Space H, and the Basis in H,

The invariant subspace H, mentioned in Section 3 is constructed in
ref. 5 as a small perturbation of the space H} <= H, where HY is the linear
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span of the vectors {u,,x€Y,}. In this case there exists in H, an
orthonormal basis of the form

v.=u.+ 2 STu,

Ic Yy |I=2

where S7 are coefficients. From the estimates of these coefficients given in
ref. 5, it follows that the matrix elements

av_ =T vy, v,y (A2)
of the operator T, =T/, in the basis {v,, x€ Y,} can be represented as
(Tyve ) =(Tyuy, )y + OUCH =11+ (A3)
Further, for any y=(3'".... y*) e Y, we have

(Jy]+ 10
Hizl ..... I'l.}’“‘l!

Formula (A 4) follows from the well-known formula for the average { F)
with respect to the distribution s ,:

ﬁn
<F>;l = Z - 2 <F’ Jb|*"" J/),,>()
s !
T bt )

n=0

(ale, ) a(y)y =+t +O(CHMT?) (A4

Hp

where the summation is over all ordered sets (..., b,,) of unoriented links
of the lattice Z"*', o,=0,.06,, where b=(x, ¥), and (... )y is a
cumulant calculated with respect to the distribution of probabilities of the
nonperturbed field, with independent values distributed by the probabilities

Pr(o(x)=1)=Pr(o(x)= —1)=1/2
at every point xe Z"*'. From (A.1)~(A.4) we have that

]!

[Tic o ]!

a,=pr+! + O((CBY+2) (A.S)

where u= (u"",..., u'").

A3. The Mapping V,
The unitary mapping V,: H, = L,(T", d) is given by the formula

Viv,)=e" e L(T", di)
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In so doing, the operator T, with the matrix elements (A.2) in the basis
{v.,x€Y,} is transformed into the operator of multiplication by the
function

ﬁ();): Z (l"()i(ll.).)

neZ"

Now the conclusion of the lemma follows from (A.5).

APPENDIX B. PROOF OF LEMMA 3.2

1. In the case v=1 the function a(4, ) can be written as

a();,/)’)zﬁ(l +1 ﬂ‘:ﬁ, 7t fe'b;;,;_>+[5’2a,()», 3]
= — A — + fas( A, B) (B.1)
(l_ﬂeu.)(l _/))(,—IA) 2

where the functions «,(2, ). k=1, 2, are uniformly bounded inside the
region W:

la (4, B)l < C
Then taking into account the inequality

I . B
L—Be*)1—Be=%)| 7 (1+1/D,)?

where D, is the constant defined in (3.4), we get that (4, ) #0 in W,.
In the case v=2 we shall separate the region W, into four covering
subregions:

W, ={Im 2% <!|In |+ 6. k=1,2)
= {{Im 2| <} In B+, |Im 2| > 4 |In ]}
={um)<”; Yin B+, [Tm 27> {In B}
{

Im A% > Bl k=1,2)

||

where J 1s a small constant. Note that by the evenness of the function
aol 2, B) [see (3.6)] it is sufficient to consider the case when Im 2*¥’>0,
k=1,2. We denote

Wi=Wyn{Imi“>0k=1,2
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If2e W5 nW,, then |ag(/, B)| = (1 —k,\/ﬁ), k,>01s a constant, and the
function a(4, f) has an analogous estimate.
If e Wi n W,, then

ﬁe*i).‘l’

Q) =1+ b )

where [b(2, f}| gkz\/ﬁ, when Ae Wi n W, k, is a constant. Hence

ﬂe;ilt.’l < 1 >
A z2(l4+——=1—k, 2| ———k, =k
I“O( /),)I i +1_ﬂ€_i;_(_> —\/B l+1/D2 —\/E 3

where k,>0 is a constant, and the function «(4, f) has an analogous
estimate in the region W5 n W,. The case when ie W; n W, is con-
sidered in a similar way.

If 2e Wi n Wy, then

ﬁ(("i}"nﬂ}—e_i}":,)

— +B(A, )
l_ﬂ(e—u. ’+e—u.~) ﬂ

aglA. f)=1+

where |b(4, f)| <k,f** when A€ W nW,. Hence

1

—— kP =k
kb ) :

MdLﬂH><

where k,, ks >0 are constants, and the function a(4, §) has an analogous
estimate in this region. Thus, a(4, ) # 0 inside the region W,. The cases of
the other dimensions v > 3 can be considered along similar lines.

2. Let A=ix,xe R". From the Fourier-series expansion of the func-
tion a(4, ff).

ald, py=Y bye* A, i=(ny,...n,)
"

with real coefficients b, it follows that the function a(4, f) is real when
A=ix. To prove the nondegeneracy of the second differential of the func-
tion a{4, ) for pure imaginary 2 it is sufficient to prove this fact for the
function agy(4, B). The second differential of

exp{— Y nk.\“’"’} (B.2)

k=1
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at the point x,=(x}",..., x5

v 2 v
<Z " d.\'“‘"> exp{— Y nk.\'{)""}
k=1

k=1

} 1s equal to

and it is a nonnegative degenerate quadratic form, which is equal to zero
on the plane

Y i dx®=0

But the intersection of all these planes contains the unique point dx'! =
.-+ =dx"'=0 when {n,} runs through the integral lattice, and every expo-
nent (B.2) is a part of the sum (3.6) with the positive coeflicients

(X |me)
il 0

(recall that we consider the ferromagnetic case when £ > 0). Consequently,
the total quadratic form corresponding to the second differential of the
function ay(4, f) with pure imaginary 4,=ix, 1s positive,

5 (o) o5 ]

{ i} k=1 k=1

Cw} = ﬂz Ik

for every nonzero dv = (dx'",..., dx'").

3. The conclusion of the lemma follows from the representation (B.1)
and also (3.7) for the function a(4, f).

The lemma is proved.

APPENDIX C. PROOF OF LEMMA 3.4

First we consider the case when v=1, and let &'"'= ¢ > 0. We can find
the critical points of the function f:(4) as the solutions of the equation
a'(A)
a(i)

d . .
a./;(l)= +ié=0, he W,

Taking into account the representation (B.1) of the function a(4) and using

Rousher’s theorem, we can prove the existence of two critical points of f(4):

I +[EXH1 -2 +4821'2—&(1+ B
2p(1 &)

Im AT >0,Im 2{7’ <0, |a' (& B)| < CB, C is an absolute constant.

W) =

+a' (¢, B)
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If £=p8, then the critical points A{*' (&, B) will lie in the region
[Im 4] = 4 |In B} + J, where § >0 is a constant. In particular, for ¢ such that
Eza>0,0 ais a constant, it is easy to see that the critical points have the
following representation:

ATUE By = —i<ln[f+ln <1 +é)+a‘+)(g“‘[)’)>, Im AL+ >0

i{,“’(f,/}’)=n+i<lnﬂ+ln <%—l>+oc“'(é,ﬂ)>, 0<é<l, ImA,™'<0

where |&fT(&, )| < CB, C is an absolute constant.
Since the critical points 2y*’ (£, ) must be inside the region W, it is
necessary that

1 1
I+E>D, for AyH'e Wy, E—1>Dl for Ay~ e W,

where D, is the constant from (3.4). But to use the saddle-point method
only the critical point ;%' (&, ) with pure imaginary coordinates will be
important for us (as will be shown below), so we shall restrict our con-
sideration to the first inequality, which leads to the following estimate on &:

1

E<

To find the saddle-point contour, we have to consider the level line of the
function Im f{A) passing through the points Ay*'(&, ) and )¢, B).
A detailed analysis of the function Re f:(4) shown that the saddle-point
contour goes through the point A"’ parallel to the torus 7. As for tile
other critical point A{~', the corresponding contour ought to have the
vertical tangent at the point Ay~ '. But for any such contour there always

exists a point A’ # A’ on this contour such that
Re f:(2')> Re f3(1")

Hence there does not exist a saddle-point contour passing through the
point 4,7,

For arbitrary real ¢ such that || 2« >0, in the case v=1 under the
condition

4 <5
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there exists the unique saddle point for the integral (3.15) inside the region
Wy, which is equal to

lolé . By= —isign - <ln f+In <1 +|—é—|> + (&, ﬂ))
where |a(&, f)| < CB, C is_an absolute constant.

For small 0 <é<\/ﬁ the corresponding critical points A,¥ (&, ff) are
inside the region [ImZ|<i|lnpg|+d’, 6'>J, and only one of them,
A&, B), with pure imaginary coordinate is the saddle point for the
mntegral (3.15).

In the case v> | we can divide the region W into 2" subregions in the
same way as in Appendix B. Then we can prove the existence of a unique
critical point with pure imaginary coordinates in each of these subregions
using the representations (3.5) and (3.6) for the function a(Z, #). In so
doing, each of these subregions corresponds to some values of the
parameters ¢ = (&', &) as we have explained above. If

where a is an absolute constant, then similar to the case v=1, under the
conditions

(1+ 5 11)> Dl k=l

s=1lo.
in W there exists a unique saddle point 1,(&, B) for the integral (3.15) with
pure imaginary coordinates
1 + Z.y= 1.1 Ié(“‘)l
|§v(k)|

A(E, By = —isign &R <1n f+1n +a,(&, /f)), k=1,.,v

where |1, (&, B)[ < C;B.

Further, the saddle-point surface is constructed in much the same way
as in the case v=1: it must pass through the point A4(&, ff) parallel to the
torus 7. The lemma is proved.

APPENDIX D

Statements. 1. From the results of refs. 8, 9, and 20 it follows
that in the case v=1 for every AT

A, (z+i0)#£0
when ze{a,(1), Le T}, and the function a (/) is defined by (4.10).



Decay of Correlations for Lattice Spin Fields 113

2. From Lemma 3.1, the representations (3.5)-(3.7}, and the results
of ref. 15, it follows that in the case v=2 for A€ 0(0)
Az4+1i0)£0
when z e {a (1), Le T*}, and the function a (1) is defined by (4.10).

Proof of Lemma 4.2. Using the explicit representation for the kernel
of the wave operator (4, 4, /1),'® we can write the function g ,(4, 1) in the
notation of formulas (4.9)—(4.11) as

g, (A, )= LV.Q*(A, 1 A) f25(4, 2) di

T (4, A, a (1) +i0)
“{a (1) —a,,(l)—tO

=fia =] 1254, @) da

=/%(4, )= lim f M'—’f (A, 2)da (D)

s—aygiy+i0 T ((l (/l)
where
. D4, 4z
T (4, A,z):%)—), zeC\@, (D.2)
AL

@ , is the range of the function a ,,(i), AeT", 4,z) is the Fredholm deter-
minant, and D (4, /1, z) is the Fredholm minor for the kernel S,(/, /1); see
(4.11) and (4.4).

Let us consider the case v=1. Recall that the Fredholm minor and
determinant can be represented in the form of series:

o7 1 A(n) é . é n .
4,(z)=1 —| - 4> dé, D3
A2) +§mL Ln,l ..... I zﬂé, (D3)
. D Lo &) s
D (44, 2)=S (4 p0) ac;, (D4)
‘ ! zl n! j jT H:—l ..... n(aA(é )_Z) iE[l

where 4 (&, ., €,) =det { A(é,,é W D (L4, ¢, €,) are so-called
nth Fredholm minors corresponding to the kernel S (4, /) (see, for
example, ref. 19). It is easy to see from Hadamard’s inequality that the
functions 4 ,(z) and D,,(}:, 4, z) for fixed A, fie T are analytic with respect
o (z,4), when z¢ @ ,. In addition for every xe@ , except maybe the
critical values of the function a,(4) there exist limits

Al*f(x)= Ilm A/I(Z)a xe@A

= x+i0

822,84;1-2-8
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when z tends to the upper ( +) or lower (—) extent of @ ,. By analogy, the
function

. 4 2)
14 z)= —/‘ (A, ) di
A4, 2) J @)= f It

is analytic with respect to (z, A4) as z ¢ 6 4, and it has limits, when = tends
to the extremes of & ,,

15, x)= lim [I,4z), xe@,

= xi0

[except maybe the critical values of « (A)]. In this case the functions
4% (x), 1F (4, x) are analytic with respect to 4 and xe® , [except the
critical values of a,(1)].

In the local coordinates (4, {) [see (4.18)] in the neighborhood O of
the point (0,0)e T' x T' we have exactly a unique critical point 1, with
coordinates A, =(4, 0), and it is easy to show that the following represen-
tations are valid:

. S40) .
A:(CIA(C))=—2ﬂlm(1+N‘4(é))
S,0) f35(A4,0 .
[/T(C,aA(C))z_ .—A(IA)—(E)(IU?_—)(I"‘P,/j(Q))
A

where A4 ,({) is the second differential of the function « () at the critical
point A,=(4,0),

SA(O) = S,,(O, 0)

[ S‘;”(é"s"'w éll) u £
A 182 i
—1)!fr JT]_L.:2 ..... ,,(a_,,(fi)—a,,(o))i=2(
S(”)(é’)v i3 én)_det{szi é é )}I_/—l ‘sl=0

the functions N ,({), P ({) for any (e O(0) are analytic in A4, and satisfy
there the estimates

[N 4(C)] <const-[{], |P4({)] <conmst-[{], (e O(0)
In addition, a detailed analysis of the integrals from (D.3) and (D.4) shows

that

I7(& a40))

=f2(A4,0)+ R ({
A (a0 S )+ R ,4({)
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where the function R ({) has the representation
RO =140 e((4, O +eo4,0), {e0(0) (D.5)
¢;(4, ), j=1, 2, are functions analytic in O, and c,(4, 0)=0.
Finally using the expansion of the function f,({) at the point (=0,

from (D.1), (D.2), and (D.5) we get the representation (4.19).
The cases v =2 are considered in a similar way. Lemma 4.2 is proved.

APPENDIX E. PROOF OF LEMMA 4.3
Let us consider in the region
R={(A2, L) e W, x W, ImA, =Im A, |Im | <G,,j=1,2}
forany A=A +i2s, —n<A<n —G, <s<G,, the following manifold:
r{l={()»|,iz)eR: i] +A2=A}
I'y<R, and let A=Re 1, =Re A be a coordinate of the point situated on
I ;. A projection of any manifold I, on the cut {Im4,=Im1,=0} =R
has the shape shown in Fig. 1.

As discussed above in the proof of Lemma 4.2, the function g (A4, 1)
is analytic in 4 when A€ T' is real (i.c., for s =0), real-analytic in e T"',

N A

2

AN

Fig. 1.
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except the critical points A(A4), AL(A4), and for every AeT' has the
representation (4.19) in the neighborhood of the critical points 1, = A4/2
and 1., = A/2 + n of the function a (4).

Note that for complex A the values of the function a (1), Ae T, fill
out a smooth curve y , = C' on the complex plane. Since the function a ,(4)
has the same values at the points 1 and Re 4 — 4, the curve y, is covered
twice under changes of A from —= to =, and the extreme points z,(A) and
z,(A4) of y, correspond to the critical values of the function « ,(1). From
Lemma 3.1 or from the representation (3.7) it follows that for all
A=Re A +i2s the function « (1) has exactly two nondegenerate critical
points: 1., and A...

We define now the function g,(A,2) for complex A =Re A +i2s,
—n<ReA<n, —G,<s<G,, by the formula

—f*(A.A)— lim JTI;Mi)j'ZC(A,;l)c#t (E.1)

Z—a ) +i0 a(p)—=z)

Here the limit z — a,(4) + 70 should be read as the limit when - tends to
the point a (4) €y, “on top.” and the function T ,(u, A, z), i, A€ T', is an
analytic extension of the function (D.2) to the complex manifold W, with
respect to the variable 4. The existence of this extension follows from the
representation (D.2), the formulas (D.3) and (D.4), and the fact that for
every A=Red+1i2s, -G, <s< G,

4.,(z+i0)#0

when ze{a,(2), Ae T'}. In this case the function T ,(u, A, z). pt. Ae T, is
analytic in 4 and z¢y,, and it has a limit when z - a (1) +i0 [except
maybe the critical values =,(4) and z,(A) of the function a ,(4)].
Analogous to the proof of the Lemma 4.2, we obtain that the above
function g (4, 1) is analytic in A for every fixed ¢ 4..(4), A.(A). Thus for
every fixed 4 we have to study the behavior of the function g ,(4, 2) in the
small neighborhoods O, and O, of the points 1.(A4) and A.(A), respec-
tively. In the local coordinates (A, {) of (4.23) we have two functions

gL (O =gA Wlo, i=12

defined in the neighborhoods O, and O, respectively. The investigation of
the functions g'{'(4,¢),i=1,2, is made along the same lines, so we
consider only the function g'{’ (4, {) defined in the neighborhood O, of the
critical point A(A).
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Similar to the proof of Lemma 4.2, the function 4 ,(z) has the
following representation in O(z,(A)), where z,(A) =a ucr(A)):

thy ..
c—)/iz : m+c‘,f’(:) (E2)

AA(:)=

Here e (z),i=1,2, are functions analytic in A, and the expression
=)/a"(0))'”* means the branch of the function w'/? that has positive
va]ues on the ray z=:, —a"(0)-1,0 < t < o0. In addition,

¢4 (z1(4) #£0

An analogous representation is valid for the integral

D (1. ¢, 2) b (¢, D) 2 -

A ) du = : R (e E3
I a2 TR = TG (B)
where e O(z(A)). Here the functions '/ ({, z), i=1, 2, are analytic in
A, ¢, and ze€ O(z,{A)), and

D'y (0, 2)=c' (z)(A) - % (A,0) (EA4)

Now from (E.1)-(E.4) we obtain the representation (4.24) with the condi-
tion (4.25). The lemma is proved.
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